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Abstract-The initial drop size in an annular flow which is determined in terms of the mechanism of droplet 
generation by shearing off of roll-wave crests by gas flow can be larger than the maximum stable droplet size 
in forced convection pipe flow. In this case the droplet size is further determined by droplet disintegration 
mechanism. Disintegration of droplets in a gas stream has been studied by a number of researchers. Several 
disruptive mechanisms of droplet break-up have been suggested. Each of these controlling mechanisms 
was evaluated as applied to the annular flow. It was concluded that in a case of partial entrainment the 
maximum size of a fluid particle was mainly controlled by the action of the dynamic force a fluid particle 
experiences in a relative motion. Based on this dynamic force and the stabilizing effect of surface tension. 
a detailed method for predicting the maximum droplet size in annular flow was presented. The correlations 
for the representative droplet mean diameters as well as the size distribution were then developed. A 
comparison with experimental data covering a wide range of fluid and flow variables indicated that indeed 

the postulated droplet disintegration mechanism was the dominant factor in determining the drop size. 

INTRODUCTION 

THE INITIAL droplet size in an annular flow is deter- 
mined in terms of the mechanism of droplet gen- 
eration such as shearing off of roll-wave crests forming 
on a thin liquid film by a streaming gas flow, Kataoka 
et al. [l]. From annular flow visualization studies of 
Whalley et al. [2], it was observed that the droplets 
emerge from a roll-wave. However, the largest drop- 
lets with a diameter larger than the maximum stable 
size start oscillating for a while, and suddenly, irres- 
pective of their position in the tube cross-section, a 

higher frequency oscillation starts that results in the 
break-up of the droplet in a short period of time. 
Lopes and Dukler’s [3] local droplet size measure- 
ments confirmed qualitative observations of Whalley 
et al. that the average drop size decreases towards the 
center of the annular two-phase flow column. These 
experimental findings are a clear indication that the 
droplet size in an annular flow is not determined at 
the time of entrainment. It is mainly controlled by 

the mechanics of the gas-droplet interaction in the 
turbulent gas stream. 

For the purpose of providing basic information on 
the maximum size a droplet can reach, a number of 

processes which may cause break-up of droplets in a 
gas flow have been studied by several investigators, 
and a number of disruptive force mechanisms of the 
droplet break-up have been identified in the literature. 
Each of these controlling mechanisms was tested by 
Lopes and Dukler [3] against their experimental air/ 
water data. It was concluded that the maximum drop- 
let size in an annular flow is mainly controlled by the 

action of forces resulting from the pressure fluc- 
tuations of the turbulent flow of the gas around a 
droplet. Based on the theory presented by Kol- 

mogorov [4], Lopes and Dukler suggested a simple 
predictive method for the droplet size. The method 
incorporated a critical Weber number of 0.194 deter- 
mined from their air/water data at about atmospheric 
conditions. In the present study, the Sauter mean 
droplet sizes predicted by the Lopes and Dukler 
method were compared using the recent data of Jep- 
son et al. [5, 61, where the property effects such as 
the surface tension and the fluid density ratios were 
investigated systematically. The method gave a 
reasonably good estimate of droplet sizes for those 
data where the density ratios are comparable to the 
atmospheric air/water system. However, differences 
between predictions and the experimental data 
became larger and larger as the density ratio moves 
away from the air/water density ratio of atmospheric 
conditions. 

In view of the above comparison, an investigation 
has been undertaken to clarify the property effects on 
the droplet disintegration in an annular flow. This 
paper which summarizes our findings has three objec- 
tives. Based on the competing forces between stabi- 

lizing surface stresses and the disruptive dynamic force 
exerted on a particle partially entrained by the sur- 
rounding fluids, the first objective is to develop a 
method to describe the break-up of entrained droplets 
in the gas core of an annular flow. The second objec- 
tive is to develop an experimentally based simple cor- 
relation for the maximum stable size a droplet can 
reach in a turbulent flow field. Finally, the third objec- 
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NOMENCLATURE 

4 roll wave amplitude Greek Symbols 

C, coefficient in equation (16) 6 average liquid film thickness 

C, coefficient defined by equation (15) AP density difference 
d spherical droplet diameter E energy dissipation rate per unit mass 

4 hydraulic diameter of flow channel B distribution parameter in upper limit, 

d,,,, maximum spherical bubble diameter log--normal distribution 

4, Sauter mean diameter of droplets E” scale of local turbulence 

(=dJ P dynamic viscosity 

4, volume median diameter of droplets 5 parameter defined by equation (31) 

j superficial velocity P density 
K dimensionless quantity defined by 0 surface tension 

equation (19) 5 external stresses 

P pressure 
Re, liquid Reynolds number ( = pfd,,(j,)/pf) : 

interfacial shear stress 
normalized volume of droplet in 

4 gas Reynolds number (= p,d,,(j,)/pJ distribution. 
u velocity 

’ u:- mean square fluctuation velocity Subscripts 
difference between two points at a 
distance dmax zi 

continuous phase 
dispersed phase 

u,),,, maximum value of local relative f liquid phase 
velocity g gas phase. 

We,, critical Weber number 

We, modified Weber number Symbols 
Z axial coordinate. 0 area-averaged value. 

tive is to extend the maximum droplet size predictions When d,,,,, Q 1 viscous forces play a dominant role. 
to obtain the droplet size distribution as well as mean In this case, the phenomena associated with the break- 
droplet sizes. up of a drop or bubble are similar to those investigated 

by Taylor [7]. In most applications, the particle Reyn- 

MECHANISTIC MODELING OF DROPLET 

BREAK-UP 

odds numbers which are characteristic of the internal 
flow field are much greater than unity so viscous 
effects are negligible. In this case, the disruptive 
dynamic forces and stabilizing surface tension are 
dominant in the process of fluid particle break-up. 

A generalized break-up mechanism can be ex- 
pressed as a balance between external stresses, t, and 
the surface stress, a/(d/2), where o is the surface ten- 
sion and d is the droplet diameter. These stresses 
influence both the size of droplets which are torn away 
from their point of formation and also the maximum 
droplet size which is stable in the flow field. Therefore, 
the stability condition can be characterized by the 
ratio of the external stresses and surface stress by a 
suitably chosen Weber number. The critical Weber 
number above which the droplet is no longer stable is 
defined as 

where d,,,,, is the maximum stable droplet size. 
Basically there are two external disruptive stresses 

that are involved in the breaking up of particles, 
namely, viscous and dynamic stresses. The relative 
order of magnitude of these stresses is determined by 
the ratio of length scales, d,,,,,/l, where 1 is the internal 
length scale of local turbulence for the equilibrium 
range (usually called the Kolmogorov microscale). 

The disruptive forces may develop either through 
the local relative motion around the droplet, or 
through the changes in eddy velocities over the length 
of a droplet. For both cases, however, the external 
stress appearing in equation (1) can be expressed in 
terms of the kinetic energy differences around the 
droplet. From equation (1), the former yields 

WecrjI = Pc4,maxdmax12~ (2) 

whereas the latter gives 

We,,,, = pcu:2d,,,ax/20. (3) 

The mean-square spatial fluctuating velocity term, u:*, 
describes the turbulent pressure forces of eddies of 
size (I,,. and is defined as the average of the square of 
the differences in velocity over a distance equal to 
the fluid particle diameter. u,),,, is that limiting local 
relative velocity at which a fluid will flow around a 
particle suspended in it. The subscript c identifies the 
continuous phase. 

Considering the simplest case of turbulence, 
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namely, an isotropic homogeneous turbulence, the 
main contribution to the kinetic energy, uG2, is made 
by the fluctuations in the region of wavelength where 
the Kolmogorov energy distribution is valid. In this 
region the local turbulence pattern is solely deter- 
mined by the energy dissipation rate per unit mass, E. 
The mean square velocity difference, ~7, between two 
points, d,,,,,, is given by Batchelor [8] as follows : 

24’: - (Edmax)2!3 (4) 

whereas u,),,, is given by Levich [9] as 

~max w Wmx(~~I~c)l “‘(~WP,) “2 (9 

where the subscript d identifies the dispersed phase. 
When equations (4) and (5) are inserted into their 

respective places in equations (2) and (3), the fol- 
lowing critical Weber numbers can be obtained : 

and 

Wecr,2 = kzpc&2’3d2;x/o (6) 

B% I = k,p,E2’3d~~~(PdlPc)2’3(IAPIIP~)I~ (7) 

where k, and k, are proportionality coefficients. The 
numerical coefficients probably have no great sig- 
nificance. They are set forth here only in order to 
stress the absence in these formulas of large numerical 
coefficients. Both k, and k, are the same order of one. 

Equations (6) and (7) can be used to determine the 
maximum fluid particle size as follows : 

d,,, = (~Wecr,2/kZpc)3iS~-215 (8) 

and 

d,,, = (0 B%,, lk, P,) 3’5~~2’5(pc/pd)2’5(Ap/pd)-3’s. 

(9) 

Both equations relate the maximum stable bubble 
or drop diameter to the energy dissipation rate of E 
and the surface tensions but differ in their functional 
dependence on the fluid densities. These equations 
have previously been used to describe liquid-liquid 
and gas-liquid dispersions in horizontal pipelines, but 
their application to liquid-gas droplet systems has not 
been evaluated for a wide range of fluid properties. 
Sevik and Park [lo] were able to predict, theoretically, 
the value of Wecrj2 = 1.24 for the air bubbles in a water 
jet and WecrjZ = 0.52 for the case of liquid droplets in 
turbulent liquid of equal density. These numerical 
values of the critical Weber number are remarkably 
good for the air/water bubbly flow experimental 
observations of Sevik and Park and for the liquid- 
liquid dispersions experiments of Hinze [ 111. As men- 
tioned above, however, WecrjZ = 0.194 obtained for 
water droplets in turbulent air stream by Lopes and 
Dukler [3] does not give good results in the whole 
experimental range of Jepson et al. [5, 61, where the 
density ratio ranged from pd/pE = 550 to 3700. The 
discrepancy can be explained by comparing the 
expression for fluid velocity relative to the particle, 
u,),,,, with the change in velocity of turbulence eddies 

over a distance equal to the dimension d,,,,, of the 
particle, (~4:~)~“. 

A comparison of equations (4) and (5) shows, that, 
when pd < pc (gas bubbles or lighter liquid droplets 
in a surrounding liquid), u,),~~ << (Uf2)‘/2. In this case, 
large-scale eddies of continuous phase completely 
entrain the fluid particle together with portions of 
fluid adhering to it, and transfer both as a single unit. 
The entrainment of particles by turbulent eddies is 
complete. Therefore, the second Weber number cri- 
terion, Wecrj2, which is based on 2, mechanistically 
describes the fragmentation of drops and bubbles in 
a turbulent liquid flow for pd < pc. 

However, the disintegration of a drop in a turbulent 
gas stream, i.e. where the density of the medium is low 
as compared to that of the liquid within the drop, occurs 
in a somewhat different way. In this case, the entrain- 
ment of particles by turbulence eddies cannot be com- 
plete. The smaller-scale fluid motions are unable to 
entrain the particle, and in relation to them, the par- 
ticle acts as a motionless solid body. The fluid par- 
ticipating in these small-scale motions flows over the 
surface of the particle. In this case, the local relative 
velocity given by equation (5) plays an important role 
in the mechanism of the drop’s disintegration. In the 
case of pd >> pc, from equations (4) and (5) it is evident 
that 

%maxl(Z) “2 = (Pd/PJ lb3 (10) 

which indicates that u&ax >> ui2. Therefore, the dis- 
ruptive forces based on u,,,,,,~~ become much larger 
than the disruptive forces generated by changes in 
eddies. In this case, the first critical Weber number 
criterion Wecrj,, describes the disintegration of drops 
in a turbulent gas stream. This is the mechanistic 
approach that will be taken in the remaining part of 
this paper. 

MAXIMUM DROPLET SIZE CORRELATION 

In view of the above discussion, equation (9) 
describes the maximum droplet size in an annular flow 
as a function of the local energy dissipated by the 
turbulence and the physical properties of the fluids. 
Considering the fact that p,, s pc, equation (9) can 
be simplified as follows : 

A,,, = (uWe,,,,lk,p,)3’5(p,lp,)2’5E-2’5 (11) 

where the subscripts c and d identifying the con- 
tinuous and dispersed phase, respectively, are replaced 
by the subscripts f and g for the liquid and gaseous 
phases. 

In a pipeline the local energy dissipation rate, E, is 
equal to the average energy dissipation rate, (E), and 
approximated by Lopes and Duckler [3] as follows : 

(E) N ((jg>/Pg)(-dP/dz), = (<jg>lPg)(4~il4) 

(12) 

where (j,), (- dP/dz)r, 7, and d,,, respectively, are the 



avcragc superficial gas vclocily, frictional component 
of the axial pressure gradient. interfacial shear and 
the hydraulic diameter of flow channel. With equation 
(12) for E:. the maximum stable droplet size can bc 

calculated from equation (I I) as follows : 

tC,,.,, = IVPb;, (rri~-,&): 5(p@/[),)2 ( 

x [((.i,).!Y,)(45,l’4,)1 2 i. (13) 

Ishii and Grolmas [ 121 slightly modified Wallis’ [I 31 
interfacial shear correlation. and derived the following 
expression for the annular flow. 

T, = 0.0428(CzC,,)’ ‘Re,l ’ Re, 2’(p,l’p,)’ ’ 

x (P,,‘IQZ ‘(P,<i,)‘? (14) 

where C, is a constant coeficient, and C, is given in 
terms of the viscosity number as follows : 

C,, = 1,‘35.34N,~~’ for N/I d 1115 (t5a) 

and 

C,,, = 0.25 for N/L > I,‘15 (t5b) 

where the viscosity number, N/L. is defined by 

> 
N/I = IL,-/[p,rr(cr,‘gAp) ’ ‘1’ -. (16) 

Finally, substituting equation (14) into equation 
(13) for T, and rearranging the resulting equation, an 
expression for the maximum drop diameter can be 

obtained. 

d,,,,, = 2.673[ I+‘(& ,‘C; “k: ‘](o/p,(,j,)-?)’ ’ 

x (Rei/Re,.)’ “[(p,/p~)(~L,~~~)]“‘sd~ ‘. (17) 

In terms of dimensionless groups, equation (I 7) can 

be expressed as follows : 

d&, = 2.673[ IV&f, ic’% “k: ‘1 We,,,’ ’ 

x (RezjRe,)’ ‘“[(~,l~‘,-)(~l~!lc,)]~ ” (18a) 

or 

d,$,, = 2.673[ We:,f,jCl “k:,‘]K (18b) 

where K is defined by 

K = C;4”c WC’,,~.’ (Re;/Re,)’ ‘“[(p,:‘pl-)(~L,,‘pL)]J Is. 

(19) 

In the above equations, d,*,,, is the dimensionless drop 
diameter, and We,,, is a modified Weber number based 

on macroscopic variables. They are defined by : 

4z.,x = d,,,.,idh and We,, = p,d,,( jgj2/o. (20) 

The foregoing expressions describe the maximum 
droplet size as a function of the liquid and gas phase 
Reynolds numbers, modified Weber number and the 
dimensionless physical property groups. For practical 
applications, the proportionality constant in the 
above equation should be correlated in collaboration 
with experimental data. 

Several cxperimcnts have been carried out to study 
droplet size distributions in annular two-phase flow 

(14~17j. Among thcsc available data. only the Lopes 

and Duklcr [3] data were used for the correlation 
purpose. Thcrc arc several reasons for this prcfcrencc. 
(1) In their study the actual mcasurcd maximum drop 
diameters were listed together with the statistically 

detcrmincd diameter. (2) They carefully distinguished 
the maximum diamctcr mcasurcmcnts in the core 
from those measured close to the interface. (3) Finally. 

there was no way of assessing the statistical r&ability 
of the values of l/,,,,,, measured cxpcrimentally. 
However, Lopes and Duklcr’s mcasurcd c/,,,,,, values 
were close to the statistically expected d,,,,, values. 
It is then expected that the values of measured d,,,,,, 
represent well the maximum probable diameter within 
a reasonable accuracy. Figure I shows the dimcn- 
sionless experimental maximum diameter vs a new 

dimensionless variable. k’. 
Most of the data in Fig. I fall within & 15% of the 

following correlation 

~lX.,\ = 2.609C,, ’ ” W~J,,,’ i (RPiiRtJ,-)’ ” 

x [(,~,/p,)(~,/p,-)]4 ” = 2.609K. (21) 

Several observations can be made with respect to 

equation (21). 

(1) The drop size decreases with increasing super- 
ficial gas velocity, d,,,;,, - (jg)~m’““5. Given that the 
critical Weber number identifies the maximum stable 
drop size permissible by balancing the disruptive local 
inertial and stabilizing surface tension forces, increas- 
ing the gas velocity will cause a decrease in drop size. 

The power of (,j,) is in line with the previous exper- 
imental results of the volume median diameter, 

d I m - (.i,> ” where the power n is between 0.8 

(Linstead c’t ul. [18] and Tatterson [16]). and 1.2 
(Wicks and Dukler [14, 151 and Cousins and Hewitt 
[ 171). This tendency is also similar to the experimental 
results of Jepson et (11. [5, 61 where the Sauter mean 
diameter of droplets decreases approximately to the 
1.2 power of the gas flux. The above correlation yields 
a power of II = 14115 which is within the range of 
previously reported experimental observations. 

(2) The drop size slightly decreases with increasing 

FIG. I. Maximum diameter vs dimensionless fluid property 
and flow variable groups. 
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superficial liquid velocity, u’,,, _ (jr)-““. Exper- 
imental observations of Cousins and Hewitt [17], 

Wicks and Dukler [14, IS], Pogson et al. [19], Tat- 

terson [16], Azzopardi et al. [2@-221 and Lopes and 
Dukler [3] indicate that the average droplet size is 
almost independent of the liquid flow rate. These 
experimental observations are consistent with the pre- 
sent correlation where a very weak dependence with 

a power of - l/l 5 can be found. However, recent 
experimental observations of Jepson et al. [5, 61 indi- 
cate that for increasing liquid mass flux, the Sauter 
mean diameter shows a minimum for the air/water 
system, continuously decreases with the He/water and 
increases for the air/CH,CCl, system. Azzopardi et ul. 
[22] and Jepson et al. related this mean droplet size 

dependence on the liquid flow rate to the interfacial 

shear and droplet concentration in the gas core, and, 
hence, the droplet coalescence resulting in increased 

droplet size. In the above derivations, none of these 

effects were considered. Recent experimental obser- 

vations of Kocamustafaogullari et al. [23] for air/ 
water bubbly fiow in horizontal pipelines showed a 

very strong dependence of the mean bubble size with 
void fraction. These observations are consistent with 

the hypothesis of refs. [5,6,22]. The above derivations 
leading to the maximum stable size correlation con- 
sidered a single liquid particle in a gas stream. 
Presently an analytical study has been initiated to 
relate the turbulence level to the volumetric concen- 
tration of the dispersed phase. Hopefully this study 

will clarify the above disagreements of the mean drop- 
let size dependence on the liquid flow rate. 

(3) Equation (21) indicates that the maximum 
stable diameter increases with increasing pipe size, 

4,,,X - d;“. This is consistent with the experimental 
observations of Ueda [24] with 10 and 30 mm pipe 
sizes. However, it contradicts experimental results of 
Azzopardi et al. [20-221, who performed experiments 
in two different pipe diameters, 22 mm and 125 mm. 
It is to be noted that at the lower end the pipe sizes 
of both investigators are comparable. On the other 

hand, the pipe size used by the latter was much higher 
than the former although the gas superficial velocities 
used by both investigators were comparable 
((,j,) = 20 - 85 m s ’ used by Ueda and 
(j,) 5 24 - 64 m s-’ used by Azzopardi rt al.). By 
the time the tube diameter reaches 125 mm many 

phenomena in gas-liquid flow are altered. For 
example, the wave structure is changed. It is not 
surprising, therefore, that results in this large tube 
diameter show different effects. Drop size measure- 
ments with a more systematic pipe size change would 
be desirable in order to resolve the controversy and to 
test further the proposed mechanism and the method 
outlined here to predict droplet size. 

(4) Irrespective of whether equation (15a) or (I 5b) 
is used for C,, the maximum stable droplet size from 
equation (21) varies slightly with the liquid viscosity, 
and does not depend on the gas viscosity. The viscous 
forces within the droplet increases its stability, and 

become important when they are the same order of 
magnitude as the surface tension forces. By comparing 

the number mean diameters measured for annular 

flows by Pogson et al. [19] and by Namie and Ueda 

[25] for liquid viscosities of 0.28 and 1.0 mN s mm’, 
Tatterson et al. [26] found no appreciable influence 
of liquid viscosity. The agreement with respect to the 
liquid viscosity dependence is particularly encour- 
aging since the experiments cover a wide range of 

liquid viscosities. 
(5) Finally, comparing equations (18) and (2l), one 

obtains 

2.673 We$/C’;“Sk:” = 2.609. (22) 

The order of magnitude of the critical Weber number 
can be estimated as follows. According to Kataoka et 
al. [I], the value of C, is approximately 300 or less. 

From Levich [9], k, < 1.0. Using these values, the 
critical Weber number can be calculated from equa- 
tion (22) as 

We,,,, d 12.2. 

Comparing equations (8) and (9) yields 

(23) 

WG,? = kZ(PclPdY(AP/Pd) We,,,, (24) 

For air/water annular flow at about I .2 atm pressure 

with kz = 1.0, which is the value used by Lopes and 
Dukler [3], equation (24) yields 

WecrjZ = 0.17 (25) 

which is very close to the value of 0.194 correlated by 
Lopes and Dukler. Thus, the critical Weber number 

value based on the Kolmogorov [4] theory is 
recovered. This suggests that the interfacial shear used 
in the above derivations was correct for the air/water 
annular flow although its utility, as discussed in the 
second section may cause some problems for a wide 
range of fluid propertics. 

The maximum stable droplet sizes predicted by 
equation (21) are compared in Figs. 2(a)-(c). where 
the liquid Reynolds number is treated as a parameter. 
Considering the origin of the above correlation 
coming from the Lopes and Dukler data, a good 
agreement between the predictions and experimental 

data of Lopes and Dukler is not surprising. The Cousins 
and Hewitt data are overpredicted by the present 
correlation whereas the Wicks data are under- 

predicted. It is to be noted here that the highest drop 
sizes appearing in the list of ref. [I 71 were considered 
to be the maximum drop sizes in this comparison. As 

noted above, however. there was no way of assessing 
the statistical reliability of the values of d,,, measured 
experimentally. The data presented in Figs. 2(a)-(c) 
show no systematic dependence of d,,,,, on the liquid 
flow rate, although the newly developed correlation 
indicates a weak dependence. Considering the range 
of data fluctuations in Figs. 2(b)-(c), the agreement 
between the predictions and experimental measure- 

ments is fairly good. 
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FIG. 2. Theoretical and experimental values of the maximum stable droplet diameter: (a) Lopes and Dukler 
[3] ; (b) Cousins and Hewitt [17] ; (c) Wicks [14]. 
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DROPLET SIZE DISTRIBUTION 

Volume distribution function 

Mugele and Evans [27] analyzed several size dis- 
tribution formulas for dispersed materials, and their 
application to spray data. A modification of the log- 
probability equation, called the upper-limit log- 
normal distribution equation, was developed and 
proposed as a standard for describing droplet size 
distributions in sprays. It introduced a new and phys- 
ically significant parameter, d,,,, the maximum stable 
droplet diameter, for which an expression was 
developed above. 

The upper-limit log-normal distribution advanced 
by Mugele and Evans for atomizing jets has been used 
with relative success by several investigators [l, 3, 14 
16, 18, 26, 281 in annular dispersed flow. It is given in 
the following form : 

$ = @f/J4 exp (-$5’) 

where o is the volume fraction of droplets having 
diameter less than the droplet diameter, d, q is the size 
distribution parameter, and 5 is the dimensionless 
function of d defined as 

[ = In (ad/(dmax -d)). (27) 

The drop size measurements of refs. [3, 14-181 
which had a large enough sample size were used to 
determine a and 5. The data were fitted to an upper 
limit, log-normal distribution. Two typical examples 
of such a fit are illustrated in Figs. 3(a) and (b) for 

lo <j,>[m/s] <j,>[m/s) Lopes It Dukler (19851 

xl 3 j,(m/s] j [m/s] Cousim h Hswill(lll6E 
I 0.092 9e.w J 
. 0.170 26.58 8. 
o 0.278 28.58 cm l 

I 0.340 28.58 
I: 

FIG. 3. Example of upper limit, log-normal distribution: 
(a) Lopes and Dukler [3] ; (b) Cousins and Hewitt [ 171. 

several runs of Lopes and Dukler [3], and Cousins 
and Hewitt [17]. In these plots, d,,,,, represents the 
maximum expected diameter. The parameters a and 
q were determined as follows : 

and 

(28) 

0.394 
?= 

Ko/(&,, -441 
(29) 

log [dso/(d,,~ - &)I 

where dsO and d,, are 50th and 90th percentiles which 
were read from Fig. 3(a). 

It is important to notice from Fig. 3(a) that the 
values of a and r~ are not completely independent of 
flow variables. There is a systematic shift on the data 
points as (j,) varies. Similar shifts can also be 
observed from Fig. 3(b) as (j,) varies, although the 
shift is not as consistent as that seen in Fig. 3(a). q 
and a would be only weakly dependent on flow vari- 
ables. For practical purposes, they are treated con- 
stant in the present study. 

The experimental data collected from various 
sources were analyzed in the same way as shown in 
Figs. 3(a) and (b) to determine a and q values for each 
set. Then the results were averaged to obtain a = 1.93 
and q = 0.75. Therefore, one obtains a correlation for 
droplet distribution as 

$ = (0.75/Jn) exp (-0.563<*) (30) 

with 

1.93d 
t=---- 

dm,, -d’ 
(31) 

The above correlation for the droplet size dis- 
tribution implies that the distribution can be uniquely 
determined by the maximum stable diameter which is 
a function of the gas and liquid properties and their 
respective flow rates as indicated by the correlation 
for d,,,,, given by equation (21). 

Mean droplet sizes 
By knowing the droplet size distribution, one may 

calculate expressions for the mean diameters accord- 
ing to the upper-limit log-normal distribution. The 
Sauter mean diameter, dx2 and the volume median 
diameter, d,,, can be easily derived in terms of the 
maximum stable droplet diameter. They are given by 

d,,,,,/d,, = 2.93 and d,,x/d,2 = 4.01. (32) 

These equations can be used together with d,,, cor- 
relation given by equation (21) to derive expressions 
for 4, and dx2. They are given in dimensionless form 
as follows : 

d,,/d,, = 0.9OC; 4/‘5 Wei3j5 (Rei/Re,)4”5 

x [(P,/Pr)(Pg/Pf)14”5 = 0.9OK (33) 
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and 

d,Jd,, = 0.64C;“” Wen;“’ (Rei/Re,.)” Ii 

x [(p,/p,)(pc,/pr)l”“” = 0.65K. (34) 

The above equations are compared with exper- 
imentally measured mean diameters of several inves- 
tigators [5,6, 12-141 in Figs. 4(a)-5(c). The conditions 

of these experiments are described in Table I. Figure 
4(a) illustrates such a comparison in terms of the 
volume median diameters whereas Fig. 4(b) shows a 
comparison in terms of the Sauter mean diameter. 
Figures 5(a)-(c) illustrate more detailed comparison 

with Jepson et al. data covering a wide range of 
physical properties of fluids. 

The Cousins and Hewitt data compare fairly well 
with predictions. Wicks’ data are consistently under- 
estimated by the present correlation in the range of 
lower values of K in Fig. 4(a). However, a systematic 
similarity in tendency between predictions and 
measurements of (I,, is a strong indication that the 
mechanistic model used here to derive the maximum 
stable droplet size properly accounts for the essentials 
of the droplet break-up process. Tatterson’s data 
show much higher spread with the measurement of 
cl,,,,. There may be several reasons for the apparent 
but consistent discrepancies. 

(1) Still photography was used by Cousins and 
Hewitt for upward flow of air and water in a circular 
channel of 9.5 mm. Wicks [14] and Wicks and Duklcr 
[ 151 used an electrical conduction probe technique for 

the downward flow of air and water in a rectangular 
channel, 150 mm wide and 19 mm deep. The probe 
consists of two needles pointing at each other in the 
air stream containing droplets. By varying the spacing 

between the needle tips. the functionality between the 
counting rate and distance of separation was deter- 

mined, and the drop size distribution was extracted 
from these results by numerical methods. Tattcrson 
applied an electrical probe technique to measure drop 

sizes for air/water flow in a horizontal rectangular 
channel 25 mm deep and 305 mm wide. The signal 
from the probe was analyzed electrically to get the 
drop size distribution. From these experimental tech- 

niques. those based on photographic data arc ccr- 
tainly the most reliable. The probe techniques used by 
Wicks and Tatterson consistently yield higher droplet 
sizes as compared to the predictions. 

(2) Both Wicks’ and Tatterson’s experimental test 

section consisted of rectangular channels. One possi- 
bility of the apparent but consistent disagreement on 
the tlV,,, is that the interfacial shear used for the present 
correlation might not have been proper for the rec- 
tangular flow channels. However, as the mechanistic 
model implies. the similarity in tendency would indi- 
cate that the drop size is not very sensitive to the flow 
orientation. 

(3) As demonstrated by Lopes and Dukler [3], the 
place where the droplet size sampling is made in the 

annular core is very important in the droplet size 
measurements since the average drop size decreases 
towards the center of the annular two-phase column. 
It is evident, therefore, that any droplet size measure- 
ment close to the interface will yield higher average 
droplet sizes. This may also be an important factor 
for the obvious but consistent disagreement shown in 

Fig. 4(a). 

The overall agreement in Fig. 4(b) is particularly 
encouraging since the experiments cover a large range 
of physical property group from 540 to 3700 for 
(pr/p,) and the modified Weber number group from 
125 to 3285. Considering the experimental uncer- 

tainties involved in the droplet size measurements, 
the predicted mean droplet sizes agree reasonably well 
with those measured sizes. This indicates that the 
principle mechanisms involved in the droplet break- 
up process were properly accounted for in the 
development of the theoretical model. 

Figures 5(a)-(c) compare the predicted dependence 
of the Sauter mean drop diameter on liquid and gas 
Reynolds number with the drop size data for the fluid 
systems air;CH,CCl,, air/water and He/water. All sys- 
tems show the drop size decreasing with increasing 
gas Reynolds number as predicted. However, there is 
a general disagreement in terms of the liquid Reynolds 
number dependence. The experimental observations 
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of Jcpson (‘I tri. indicate that for increasing Rv,. the 
Sauter mean diameter shows a minimum for air:watcr 
system. a continuous decrease with Hc:watcr and an 
increase for air;CH,CCI, system. whereas the prc- 

dictions show a slight decrcasc with Rc,. As discussed 

in the Mechanistic Modeling of Droplet Break-up 
section, this apparent di~greemcnt may bc ~~ttribut~~i 
to the insensitivity of the inter&cial shear stress, 2,. 
to the different entrainment mechanisms and of the 
droplet volumetric concent~ltioti, It is believed that 

both of these factors play important roles in deter- 
mining the mean droplet size in an annular flow. Marc 
specifically, mechanistic interfacial shear expressions 
which can be used for a wide range of flow variables 
are needed. Presently an analytical study is underway 

lo clarify the above d~sagreem~ll~s. 

SUMMARY AND CONCLUSIONS 

Two Weber number criteria, one based on the 

classical Kolmogorov theory and the other on 
Levich’s theory, were discussed and compared to each 

other. It was concluded that when pd < pc, the entrain- 
ment of fluid particles by turbulence may be complete, 
and that Weber number criterion based on Kol- 
mogorov’s theory nlechanistically describes the frag- 
mentation of drops and bubbles in a turbulent liquid 
flow. However, in the case of droplets in a gas stream 
with pd >> pc, the entrainment of droplets by turbulent 

eddies cannot be complete, and relative motions play 
a major role instead of eddies in the mechanism of 
droplet disintcEration. 

Based on the competing stresses between stabilizing 

surface forces and disruptive dynamic forces, a theor- 
ctical model was developed to describe the break-up 
of entrained droplets in the gas core of an annular 

flow. The experimental data of the maximum droplet 
size were correlated in terms of Re,. Re,. Wtl,,,. and 

the physical property groups of (pi-/p,). f{lrj/lg) and 
N/I. Effects of each group in determining the 
maxinluIn stable droplet size were discussed in the 
context of available experimental data. It was con- 
cluded that the functional dependence of d,,,,, on these 
groups could be experimentally verified. Con- 
tradictory experimental data on pipe size and liquid 
flow dependency indicate that drop size measurements 

with a larger range of flow channel sizes and of liquid 
Aow rates would, however, bc desirable in order to 
test further the proposed mechanism and the method 
outlined to predict droplet size. In particular. it is 
essential to obtain more and more detailed data on 
droplet size at various portions after droplet entrain- 
ment. 

An upper limit log-normal volume distribution 
function was fitted to the experimental data with dis- 
tribution parameters a = I .93 and q = 0.75. Based on 
these parameters, predictive equations were developed 
for the most representative mean droplet sizes, the 
volume median diameter and Sauter mean diameter. 
The predicted mean droplet sizes were found to agree 
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reasonably well with those measured mean sizes. This 13. 

indicates that the principal mechanisms involved in 

the droplet break-up process in a turbulent gas stream 
14. 

were properly accounted for in the development of 
the theoretical model. 15. 
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